FANDOM


Article originally on the Encyclopedia.com site:

The History of Science

As an independent professional discipline, the history of science is a new field still emerging from a long and varied prehistory. Only since 1950, and initially only in the United States, has the majority of even its youngest practitioners been trained for, or committed to, a full-time scholarly career in the field. From their predecessors, most of whom were historians only by avocation and thus derived their goals and values principally from some other field, this younger generation inherits a constellation of sometimes irreconcilable objectives. The resulting tensions, though they have relaxed with increasing maturation of the profession, are still perceptible, particularly in the varied primary audiences to which the literature of the history of science continues to be addressed. Under the circumstances any brief report on development and current state is inevitably more personal and prognostic than for a longer-established profession.

Development of the field . Until very recently most of those who wrote the history of science were practicing scientists, sometimes eminent ones. Usually history was for them a by-product of pedagogy. They saw in it, besides intrinsic appeal, a means to elucidate the concepts of their specialty, to establish its tradition, and to attract students. The historical section with which so many technical treatises and monographs still open is contemporary illustration of what was for many centuries the primary form and exclusive source for the history of science. That traditional genre appeared in classical antiquity both in historical sections of technical treatises and in a few independent histories of the most developed ancient sciences, astronomy and mathematics. Similar works—together with a growing body of heroic biography—had a continuous history from the Renaissance through the eighteenth century, when their production was much stimulated by the Enlightenment’s vision of science as at once the source and the exemplar of progress. From the last fifty years of that period come the earliest historical studies that are sometimes still used as such, among them the historical narratives embedded in the technical works of Lagrange (mathematics) as well as the imposing separate treatises by Montucla (mathematics and physical science), Priestley (electricity and optics), and Delambre (astronomy). In the nineteenth and early twentieth centuries, though alternative approaches had begun to develop, scientists continued to produce both occasional biographies and magistral histories of their own specialties, for example, Kopp (chemistry), Poggendorff (physics), Sachs (botany), Zittel and Geikie (geology), and Klein (mathematics).

A second main historiographic tradition, occasionally indistinguishable from the first, was more explicitly philosophical in its objectives. Early in the seventeenth century Francis Bacon proclaimed the utility of histories of learning to those who would discover the nature and proper use of human reason. Condorcet and Comte are only the most famous of the philosophically inclined writers who, following Bacon’s lead, attempted to base normative descriptions of true rationality on historical surveys of Western scientific thought. Before the nineteenth century this tradition remained predominantly programmatic, producing little significant historical research. But then, particularly in the writings of Whewell, Mach, and Duhem, philosophical concerns became a primary motive for creative activity in the history of science, and they have remained important since.

Both of these historiographic traditions, particularly when controlled by the textual-critical techniques of nineteenth-century German political history, produced occasional monuments of scholarship, which the contemporary historian ignores at his peril. But they simultaneously reinforced a concept of the field that has today been largely rejected by the nascent profession. The objective of these older histories of science was to clarify and deepen an understanding of contemporary scientific methods or concepts by displaying their evolution. Committed to such goals, the historian characteristically chose a single established science or branch of science—one whose status as sound knowledge could scarcely be doubted—and described when, where, and how the elements that in his day constituted its subject matter and presumptive method had come into being. Observations, laws, or theories which contemporary science had set aside as error or irrelevancy were seldom considered unless they pointed a methodological moral or explained a prolonged period of apparent sterility. Similar selective principles governed discussion of factors external to science. Religion, seen as a hindrance, and technology, seen as an occasional prerequisite to advance in instrumentation, were almost the only such factors which received attention. The outcome of this approach has recently been brilliantly parodied by the philosopher Joseph Agassi.

Until the early nineteenth century, of course, characteristics very much like these typified most historical writing. The romantics’ passion for distant times and places had to combine with the scholarly standards of Biblical criticism before even general historians could be brought to recognize the interest and integrity of value systems other than their own. (The nineteenth century is, for example, the period when the Middle Ages were first observed to have a history.) That transformation of sensibility which most contemporary historians would suppose essential to their field was not, however, at once reflected in the history of science. Though they agreed about nothing else, both the romantic and the scientist-historian continued to view the development of science as a quasi-mechanical march of the intellect, the successive surrender of nature’s secrets to sound methods skillfully deployed. Only in this century have historians of science gradually learned to see their subject matter as something different from a chronology of accumulating positive achievement in a technical specialty defined by hindsight. A number of factors contributed to this change.

Probably the most important was the influence, beginning in the late nineteenth century, of the history of philosophy. In that field only the most partisan could feel confident of his ability to distinguish positive knowledge from error and superstition. Dealing with ideas that had since lost their appeal, the historian could scarcely escape the force of an injunction which Bertrand Russell later phrased succinctly: “In studying a philosopher, the right attitude is neither reverence nor contempt, but first a kind of hypothetical sympathy, until it is possible to know what it feels like to believe in his theories.” That attitude toward past thinkers came to the history of science from philosophy. Partly it was learned from men like Lange and Cassirer who dealt historically with people or ideas that were also important for scientific development. (Burtt’s Metaphysical Foundations of Modern Physical Science and Lovejoy’s Great Chain of Being were, in this respect, especially influential.) And partly it was learned from a small group of Neo-Kantian epistemologists, particularly Brunschvicg and Meyerson, whose search for quasi-absolute categories of thought in older scientific ideas produced brilliant genetic analyses of concepts which the main tradition in the history of science had misunderstood or dismissed.

These lessons were reinforced by another decisive event in the emergence of the contemporary profession. Almost a century after the Middle Ages had become important to the general historian, Pierre Duhem’s search for the sources of modern science disclosed a tradition of medieval physical thought which, in contrast to Aristotle’s physics, could not be denied an essential role in the transformation of physical theory that occurred in the seventeenth century. Too many of the elements of Galileo’s physics and method were to be found there. But it was not possible, either, to assimilate it quite to Galileo’s physics and to that of Newton, leaving the structure of the so-called Scientific Revolution unchanged but extending it greatly in time. The essential novelties of seventeenth-century science would be understood only if medieval science were explored first on its own terms and then as the base from which the “New Science” sprang. More than any other, that challenge has shaped the modern historiography of science. The writings which it has evoked since 1920, particularly those of E. J. Dijksterhuis, Anneliese Maier, and especially Alexandre Koyré, are the models which many contemporaries aim to emulate. In addition, the discovery of medieval science and its Renaissance role has disclosed an area in which the history of science can and must be integrated with more traditional types of history. That task has barely begun, but the pioneering synthesis by Butterfield and the special studies by Panofsky and Frances Yates mark a path which will surely be broadened and followed.

A third factor in the formation of the modern historiography of science has been a repeated insistence that the student of scientific development concern himself with positive knowledge as a whole and that general histories of science replace histories of special sciences. Traceable as a program to Bacon, and more particularly to Comte, that demand scarcely influenced scholarly performance before the beginning of this century, when it was forcefully reiterated by the universally venerated Paul Tannery and then put to practice in the monumental researches of George Sarton. Subsequent experience has suggested that the sciences are not, in fact, all of a piece and that even the superhuman erudition required for a general history of science could scarcely tailor their joint evolution to a coherent narrative. But the attempt has been crucial, for it has highlighted the impossibility of attributing to the past the divisions of knowledge embodied in contemporary science curricula. Today, as historians increasingly turn back to the detailed investigation of individual branches of science, they study fields which actually existed in the periods that concern them, and they do so with an awareness of the state of other sciences at the time.

Still more recently, one other set of influences has begun to shape contemporary work in the history of science. Its result is an increased concern, deriving partly from general history and partly from German sociology and Marxist historiography, with the role of nonintellectual, particularly institutional and socioeconomic, factors in scientific development. Unlike the ones discussed above, however, these influences and the works responsive to them have to date scarcely been assimilated by the emerging profession. For all its novelties, the new historiography is still directed predominantly to the evolution of scientific ideas and of the tools (mathematical, observational, and experimental) through which these interact with each other and with nature. Its best practitioners have, like Koyré, usually minimized the importance of nonintellectual aspects of culture to the historical developments they consider. A few have acted as though the obtrusion of economic or institutional considerations into the history of science would be a denial of the integrity of science itself. As a result, there seem at times to be two distinct sorts of history of science, occasionally appearing between the same covers but rarely making firm or fruitful contact. The still dominant form, often called the “internal approach,” is concerned with the substance of science as knowledge. Its newer rival, often called the “external approach,” is concerned with the activity of scientists as a social group within a larger culture. Putting the two together is perhaps the greatest challenge now faced by the profession, and there are increasing signs of a response. Nevertheless, any survey of the field’s present state must unfortunately still treat the two as virtually separate enterprises.

Internal history. What are the maxims of the new internal historiography? Insofar as possible (it is never entirely so, nor could history be written if it were), the historian should set aside the science that he knows. His science should be learned from the textbooks and journals of the period he studies, and he should master these and the indigenous traditions they display before grappling with innovators whose discoveries or inventions changed the direction of scientific advance. Dealing with innovators, the historian should try to think as they did. Recognizing that scientists are often famous for results they did not intend, he should ask what problems his subject worked at and how these became problems for him. Recognizing that a historic discovery is rarely quite the one attributed to its author in later textbooks (pedagogic goals inevitably transform a narrative), the historian should ask what his subject thought he had discovered and what he took the basis of that discovery to be. And in this process of reconstruction the historian should pay particular attention to his subject’s apparent errors, not for their own sake but because they reveal far more of the mind at work than do the passages in which a scientist seems to record a result or an argument that modern science still retains.

For at least thirty years the attitudes which these maxims are designed to display have increasingly guided the best interpretive scholarship in the history of science, and it is with scholarship of that sort that this article is predominantly concerned. (There are other types, of course, though the distinction is not sharp, and much of the most worthwhile effort of historians of science is devoted to them. But this is not the place to consider work like that of, say, Needham, Neugebauer, and Thorndike, whose indispensable contribution has been to establish and make accessible texts and traditions previously known only through myth.) Nevertheless, the subject matter is immense; there have been few professional historians of science (in 1950 scarcely more than half a dozen in the United States); and their choice of topic has been far from random. There remain vast areas for which not even the basic developmental lines are clear.

Probably because of their special prestige, physics, chemistry, and astronomy dominate the historical literature of science. But even in these fields effort has been unevenly distributed, particularly in this century. Because they sought contemporary knowledge in the past, the nineteenth-century scientist—historians compiled surveys which often ranged from antiquity to their own day or close to it. In the twentieth century a few scientists, like Dugas, Jammer, Partington, Truesdell, and Whit-taker, have written from a similar viewpoint, and some of their surveys carry the history of special fields close to the present. But few practitioners of the most developed sciences still write histories, and the members of the emerging profession have up to this time been far more systematically and narrowly selective, with a number of unfortunate consequences. The deep and sympathetic immersion in the sources which their work demands virtually prohibits wide-ranging surveys, at least until more of the field has been examined in depth. Starting with a clean slate, as they at least feel they are, this group naturally tries first to establish the early phases of a science’s development, and few get beyond that point. Besides, until the last few years almost no member of the new group has had sufficient command of the science (particularly mathematics, usually the decisive hurdle) to become a vicarious participant in the more recent research of the technically most developed disciplines.

As a result, though the situation is now changing rapidly with the entry both of more and of better-prepared people into the field, the recent literature of the history of science tends to end at the point where the technical source materials cease to be accessible to a man with elementary college scientific training. There are fine studies of mathematics to Leibniz (Boyer, Michel); of astronomy and mechanics to Newton (Clagett, Costabel, Dijksterhuis, Koyré, and Maier), of electricity to Coulomb (Cohen), and of chemistry to Dalton (Boas, Crosland, Daumas, Guerlac, Metzger). But almost no work within the new tradition has as yet been published on the mathematical physical science of the eighteenth century or on any physical science in the nineteenth.

How to Cite This Article

ss414"Science" A Mini Encyclopedia. 2017. Did You Know Wiki. 26 July. 2017 <www.dyk.wikia.com>

ss414"Science" A mini Encyclopedia. 2017. dky.wikia.com. (July 26, 2017) "SS414"

ss414"Science" A mini Encyclopedia. 2017. Retrieved July 26, 2017 from dky.wikia.com "SS414"

Citing your sources helps people know your not plagiarizing. With Did You know? Wikia's Citation feature, you can site your sources in three different Styles

MLA

Modern-Language-Association This is the most common citation style. It is mainly used for research reports in schools.

APA

American-Psychological-Association Another common style. This one is mainly used for College and higher grade schools.

Chicago

As you would assume, common in Chicago. This is mainly used in the lower Midwest and California areas

V-E-D Citation Styles may be different. Only use Citation when you have permission to use wikis

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.